Introduction

The Aim: Designing and implementing a system which can autonomously learn behaviours of the objects in the environment and the interactions among them to be able to use these objects in automated planning (Elsen & Sarar-Talay, 2012).

A suitable testbed for this aim: The Incredible Machine (TIM) computer game

- Various objects, tools and machines with different types of interactions
- Both a planning problem (solving puzzles) and a learning problem (behaviours of and interactions among the objects)

Learning Interactions From Examples

- **Input (Tutorials):**
 - E: a sequence of events on objects
 - F: orientational features
 - R: relations among the objects
 - K: a knowledge base
 - spatial information
 - temporal information
 - spatio-temporal information

- **Output:**
 - Finite state machines (FSM): LOCM + change of orientation
 - Conditional connections among these FSMs: interactions among objects

System Overview:

- A sequence of events E + orientational features F + relations among objects R + a knowledge base K + spatial information + temporal information = spatio-temporal information

An Example Tutorial

- E_1: push_down(ball, switch)
- E_2: start(motor)
- E_3: spin(cre, conveyorbelt)
- E_4: slide(cre, conveyorbelt)
- E_5: slide_left(ball)
- E_6:竺ament(cre, conveyorbelt)
- E_7: light(light1, flashlight)
- E_8: front_left(motor)
- E_9: hit(ball, toasta)
- E_{10}: activate(resumecontroller)
- E_{11}: make_toast(motor)
- E_{12}: blow(appliance, toaster)
- E_{13}: lower(base)
- E_{14}: start(motor, mandrilmotor)

Phase-1: Creating FSMs Reflecting Behaviors

LOCM (Cresswell et al., 2009) is used to group objects with respect to their types and model their behaviors with FSMs:

- Each argument of the same type of action contains objects of the same sort (e.g., motor and motor in E_2 and E_3)
- Each event causes a transition for each object in its arguments (continuity of transitions such as E_2 and E_3 on ball)

A modification to address change of behaviors due to different orientations:

Phase-2: Modeling Interactions Through Relations

Using a Knowledge Base

- A knowledge base modeling directly observable relations

Using Spatial Locality of Objects

- Input: minimum bounding RMB(s) of objects

Using Temporal Locality of Events

- Input: starting time of events

Spatio-Temporal Reasoning

Spatial and temporal approaches have pros and cons. In human-level learning, both spatial and temporal information is used to integrate spatial information into temporal approach.

Experimental Evaluation

Planning Experiments:

- 12 TIM puzzles
 - Success rate: ratio of correctly chosen actions place, flip, connect with bolt and connect with rope (91.8%) for knowledge-based approach, 83.6% for spatio-temporal approach

References

